
Pre-copy-edited version of paper that appeared in IEEE Transactions on Parallel and Distributed Systems, Vol. 9,
No. 11. Nov. 1998, pp. 1088-1101.

A Stochastic Model for Heterogeneous Computing
and Its Application in Data Relocation Scheme Development

Min Tan* and Howard Jay Siegel †

*Segue Software Inc.
142 South Santa Cruz Ave.
Los Gatos, CA 95030
mtan@segue.com

†Parallel Processing Laboratory
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285, USA
hj@purdue.edu

Submitted in March 1997
Revised in June 1998

Abstract

In a dedicated mixed-machine heterogeneous computing (HC) system, an application pro-
gram may be decomposed into subtasks, then each subtask assigned to the machine where it is
best suited for execution. Data relocation is defined as selecting the sources for needed data
items. It is assumed that multiple independent subtasks of an application program can be exe-
cuted concurrently on different machines whenever possible. A theoretical stochastic model for
HC is proposed, in which the computation times of subtasks and communication times for inter-
machine data transfers can be random variables. The optimization problem for finding the
optimal matching, scheduling, and data relocation schemes to minimize the total execution time
of an application program is defined based on this stochastic HC model. The global optimization
criterion and search space for the above optimization problem are described. It is validated that
a greedy algorithm based approach can establish a local optimization criterion for developing
data relocation heuristics. The validation is provided by a theoretical proof based on a set of
common assumptions about the underlying HC system and application program. The local
optimization criterion established by the greedy approach, coupled with the search space defined
for choosing valid data relocation schemes, can help developers of future practical data reloca-
tion heuristics.

Keywords: data relocation, greedy algorithm, heterogeneous computing, mapping, matching,
optimization, scheduling, stochastic modeling.

This research was supported in part by the DARPA/ITO Quorum Program under NPS subcontract number N62271-98-M-0217, and by NRaD

under contract number N66001-96-M-2277.

2

1: Introduction

A single application program often requires many different types of computation that result

in different needs for machine capabilities. Heterogeneous computing (HC���) is the effective use

of the diverse hardware and software components in a heterogeneous suite of machines con-

nected by a high-speed network to meet the varied computational requirements of a given appli-

cation [CiL95, FrS93, KhP93, SiA96, SiD97, ZhY95]. One goal of HC is to decompose an

application program into subtasks, each of which is computationally homogeneous, and then

assign each subtask to the machine where it is best suited for execution.

Subtask matching, scheduling, and data relocation are three critical steps for implementing

an HC application on an HC system. Matching�������� involves assigning subtasks to machines.

Scheduling���������� includes ordering the execution of the subtasks assigned to each machine and

ordering the inter-machine communication steps for data transfers. Data���� relocation��������� is the scheme

for selecting the sources for needed data items. Here, a stochastic HC model is developed and

used as a basis to study theoretical issues for data relocation. The practical implication of the

theoretical results derived on data relocation heuristic design is explained. It is assumed that

multiple independent subtasks of an application program can be executed concurrently on

different machines whenever possible (e.g., when the machines are available for subtask

execution).

The contribution of this paper can be summarized as follows. A theoretical stochastic�������� HC���

model������ is proposed, in which the computation times of subtasks and communication times for

inter-machine data transfers are modeled as random variables. The rest of this paper focuses on

theoretical issues for data relocation using a stochastic HC model. The optimization problem for

finding the optimal matching, scheduling, and data relocation schemes to minimize the total exe-

cution time of an application program executed in a dedicated HC system is defined based on

this proposed stochastic HC model. The global optimization criterion and search space for the

above optimization problem in HC are described. It is validated that a greedy algorithm based

approach can establish a local optimization criterion for developing data relocation heuristics in

3

practice. The validation is provided by a theoretical proof based on a set of common assump-

tions about the underlying HC system and application program. The local optimization criterion

established by the greedy approach, coupled with the search space defined for choosing valid

data relocation schemes, can help developers of future practical data relocation heuristics.

The inter-machine communication time between subtasks can be substantial and is one of

the major factors that degrade the performance of an HC system. This paper focuses on poten-

tial methods for minimizing the inter-machine communication time of an application program

when the concurrent execution of different subtasks on different machines is considered whenev-

er possible. In particular, the impact of the data relocation scheme on the total execution time of

the subtasks executed in a dedicated HC system is examined.

In most of the mathematical models for HC in the literature (e.g., [ChE93, IvO95, NaY94,

TaA95, TaS97, WaK92]), the computation times and inter-machine data transfer times of data

items for different subtasks in the application program are assumed to be deterministic quanti-

ties. This is valid when the inter-machine network is completely controlled by the scheduler and

all execution times and inter-machine communication needs are known a priori (not dependent

on input data). However, there are elements of uncertainty (e.g., input-data-dependent condi-

tional and looping constructs) that impact the deterministic nature of both the computation and

inter-machine communication times for different subtasks. Such uncertainties can create others,

e.g., network contention among different inter-machine data transfer steps. They are unpredict-

able prior to execution time. One approach to modeling these computation and communication

times is to represent them as random variables with assumed probability distribution functions.

To use a dedicated HC system to execute an application program efficiently, the optimiza-

tion problem of using matching, scheduling, and data relocation schemes to minimize the total

execution time must be defined. Section 2 provides the background and terminology needed for

the rest of this paper. In Section 3, a theoretical stochastic HC model for matching, scheduling,

and data relocation is introduced. Based on the random variables of the HC model and given

matching, scheduling, and date relocation schemes, a procedure for determining the execution

4

time of an application program (with partially ordered subtasks) is presented in Section 4. In

Section 5, a method is devised to enumerate all the valid options in choosing the data relocation

scheme for a given arbitrary matching. The cases in which the application programs may in-

clude inter-subtask conditional and inter-subtask looping constructs are considered. Thus, Sec-

tions 3, 4, and 5 collectively define the above optimization problem in HC with a stochastic

model. Because of the complexity of this defined optimization problem in HC, guidelines for

devising heuristics must be provided. It is validated in Section 6 that a greedy algorithm based

approach can establish a local optimization criterion for developing data relocation heuristics.

The validation is provided by a theoretical proof based on a set of common assumptions about

the underlying HC system and application program. This theoretical result indicates that a

greedy algorithm based approach can achieve reasonable local optimization for developing data

relocation heuristics in practice.

Most of the literature for HC has concentrated on addressing the practical aspects and

heuristics for matching and scheduling. This paper emphasizes instead the theoretical issues in-

volved in data relocation using a stochastic HC model. The practical implication of the theoreti-

cal results derived on data relocation heuristic design is explained.

This research was supported in part by the DARPA/ITO Quorum Program project called

MSHN������ (Management System for Heterogeneous Networks). MSHN is a collaborative research

effort among NPS (Naval Postgraduate School), Noemix (a company specializing in software

technology for distributed computing), Purdue University, and USC (University of Southern Cal-

ifornia). It builds on SmartNet [FrG98], an operational scheduling framework and system for

managing resources in a heterogeneous environment developed at the NRaD naval laboratory,

which also supported this research. The technical objective of MSHN project is to design, proto-

type, and refine a distributed resource management system that leverages the heterogeneity of

resources and tasks to deliver the requested qualities of service.

5

2: Background and Terminology

The material in this subsection is summarized from [TaS97]. It provides the background

and terminology needed for the rest of this paper. In general, the goal for HC is to assign each

subtask to one of the machines in the system such that the total execution time (computation

time and inter-machine communication time) of the application program is minimized [ChE93,

Fre89, NaY94, WaK92]. The subtask to machine assignment problem is referred to as matching

in HC. When a subset of subtasks can be executed in any order, varying the order of the

computation of these subtasks (while maintaining the data dependencies among all subtasks) can

impact the total execution time of the application program. Determining the order of

computation for the subtasks is referred to as scheduling in HC. In most of the literature for HC,

a subtask������ flow���� graph����� is used to describe the data dependencies among subtasks in an application

program (e.g., [IvO95, NaY94, SiL93, TaA95, TaS97, Tow86]). In Figure 1, each vertex of the

subtask flow graph represents a subtask. Let S[k]���� denote the k-th subtask. For each data element

that S[k] transfers to S[j] during execution, there is an edge from S[k] to S[j] labeled with the

corresponding variable name. An extra vertex labeled Source������ denotes the locations where the

initial����� data���� elements�������� of the program are stored.

Let a data���� item���� be a block of information that can be transferred between subtasks. Using

information from the subtask flow graph, a data item is denoted by the two-tuple (s, d)�����, where s ≥

0 is the number of the subtask that generates the needed value of variable d upon completion of

computation of that subtask. If the needed value of d is an initial data element to the program,

then s = −1. Two data items are the same if and only if they are both associated with the same

variable name in an application program and the corresponding value of the data is generated by

the same subtask (which implies that the two data items have the same value).

In general, most of the graph-based algorithms for matching-related problems assume that

the pattern of data transfers among subtasks is known a priori and can be illustrated using a sub-

task flow graph (e.g., [IvO95, NaY94, SiL93, Tow86]). Thus, no matter which machine is used

6

d0

d0
�
�
�
�

d
d

X

Y

X

X

Z

1

1

0

1

0

1

S[4]

S[0]

S[1] S[2]

S[3]

X
1

Z 0
S[5]

Z
0

Source

Figure 1: Subtask flow graph for the example application program.

for executing each subtask of a specific application program, the locations (subtasks) from which

each subtask obtains its corresponding input data items are determined by the subtask flow graph

and are independent of any particular matching scheme between machines and subtasks.

The above assumption generally needs refinement in the case of HC. In [TaS97], two

data-distribution situations, namely data locality and multiple data-copies, are identified for ad-

dressing refinements of the above assumption. It is assumed that each subtask S[i] keeps a copy

of each of its individual input data items and output data items on the machine to which S[i] is

assigned by the matching scheme. Furthermore, it is also assumed that all input data items are

received for a subtask prior to that subtask’s computation.

Data���� locality������� arises when two subtasks, S[j] and S[k] that are assigned to the same machine,

need the same data item e from S[i] (assigned to a different machine). Because a machine can

fetch a data item from its local storage faster than fetching it from other machines, if S[j] is exe-

cuted after S[k], then S[j] should obtain e locally from S[k] instead of from the machine assigned

to S[i]. If a subtask flow graph is used to compute inter-subtask communication cost, then

7

without considering machine assignments, the impact of data locality might be ignored.

The multiple������� data−copies���������� situation arises when two subtasks, S[j] and S[k], need the same

data item e from S[i], where S[i], S[j], and S[k] are assigned to three different machines. If S[k]

is executed after S[j] obtains e, then the machine assigned to S[k] can get data item e from either

the machine assigned to S[i] or the machine assigned to S[j]. The choice that results in the

shorter time should be selected. Selecting the sources for needed data items is referred to as data

relocation (because the data relocation scheme determines the source machines from which the

data items will be relocated to the destination machines). In general, when using information

only from the subtask flow graph, the possibility of having multiple sources for a needed data

item is not considered. Data locality can be viewed as a special case of having multiple data

copies (i.e., one copy is on the machine to which the receiving subtask is assigned by the

matching scheme).

In [TaS97], it is assumed that, at any instant in time during the execution of an application

program, only one inter-machine data transfer step is being executed. All computation and

inter-machine communication times of subtasks are assumed to be known deterministic quanti-

ties, and any data conditional and looping constructs must be contained within a single subtask.

Based on these assumptions, a minimum spanning tree based algorithm is presented in [TaS97]

that finds, for a given matching, the optimal scheduling scheme for inter-machine data transfer

steps and the optimal data relocation scheme for each subtask. Data locality and multiple data-

copies are all considered in the above algorithm. The mathematical model for HC presented in

this paper differs from the one in [TaS97] in that, here, limited only by inter-subtask data-

dependencies and machine assignments, at any instant in time, multiple subtasks can be executed

and multiple inter-machine data transfers can be performed. Also, here the computation times of

subtasks and communication times for inter-machine data transfers can be random variables.

Furthermore, the cases in which the application programs may include inter-subtask conditional

and inter-subtask looping constructs are considered. Thus, the HC model presented here is much

more general than the one in [TaS97], which makes the data relocation more complex. It is vali-

8

dated in this paper that a greedy algorithm based approach can establish a local optimization cri-

terion for developing data relocation heuristics. This result indicates that a greedy algorithm

based approach can achieve reasonable local optimization for developing data relocation heuris-

tics in practice.

3: A Stochastic Model for Matching, Scheduling, and Data Relocation in HC

A stochastic model of matching, scheduling, and data relocation for HC is formalized in

this section. This model is an extension of the one presented in [TaS97]. The possible concurrent

execution of both the computation of subtasks and inter-machine communication steps in an ap-

plication program is considered. The issues related to using a theoretical stochastic HC model

are addressed. When the computation time of each subtask on each machine and the communica-

tion times of transferring data items have stochastic properties, those timing parameters must be

modeled as random variables. This paper examines underlying theoretical issues with respect to

data relocation. Due to the theoretical nature of the proof of the main result in this paper, it is not

necessary to know the actual distribution functions of those random variables. The mathemati-

cal model presented in this section allows the material in the rest of this paper to be given in

unambiguous terms. All notation developed in the remaining sections is summarized in the ap-

pendix for the glossary of notation at the end of this paper.

(1) An application program P�� is composed of a set of n� subtasks

S� = {S[0], S[1], ..., S[n − 1]}.

There are a set of Q�� initial data elements

{d 0, d 1, ..., dQ−1}.

(2) Suppose that NI[i]���� is the number of input data items required by S[i] and NG[i]����� is the

number of output data items generated by S[i]. There are two sets of data items associated

with each S[i]. One is the input data set

9

I[i]��� ={Id[i, 0], Id[i, 1], ..., Id[i, NI[i] − 1]},

the other is the generated output data set

G[i]���� ={Gd[i, 0], Gd[i, 1], ..., Gd[i, NG[i] − 1]}.

The program structure of P is specified by a subtask flow graph.

In this paper, the subtask flow graph of any application program P is assumed to be acyclic.

A cycle in a graph represents a loop containing one or more subtasks. With the presence of the

inter-subtask looping constructs, an appropriate statistical approach can be used to determine the

distribution for the number of iterations each looping construct will execute and the maximum

number of iterations each looping construct has [Tow86]. Then, the existent subtask flow graph

can be transformed into an acyclic one by unrolling each looping construct with the known or es-

timated maximum number of iterations. This is the approach presented in Subsection 5.3.2. The

above approach potentially will increase the number of subtasks present in the acyclic subtask

flow graph significantly. Also, the distribution for the number of iterations each looping con-

struct will execute and the maximum number of iterations each looping construct has can be

difficult to estimate in reality. A possibly more practical approach is to group a fixed number of

consecutive iterations of each unrolled looping construct together as a single subtask to decrease

the number of subtasks present. Another approach is to view each looping construct as part of a

single subtask and the boundaries for decomposing an application program into subtasks are not

allowed to be in the middle of a looping construct.

(3) An HC system consists of a heterogeneous suite of m�� machines

M�� = {M[0], M[1], ..., M[m − 1]}.

M includes the devices where all the initial data elements are stored before the execution of

the application program P.

(4) There is a computation����������� matrix������ C�� = {C[i, j]}, where C[i, j]����� denotes the computation time of

S[i] on machine M[j] (e.g. [GhY93, YaK94]). For the reason stated in Section 1, C[i, j] is

10

assumed to be a random variable with a known distribution. It can be computed from em-

pirical information or by applying two characterization techniques in HC, namely task

profiling and analytical benchmarking (see [SiA96] for a survey of these techniques). In

[LiA95], a methodology is introduced for estimating the distribution of execution time for a

given data parallel program that is to be executed on a single hybrid SIMD/SPMD mixed-

mode machine. This methodology is extended in [LiA97] for estimating the distribution of

execution time for an application program that is to be executed on a mixed-machine HC

system. However, as mentioned earlier, for the results mentioned here, it is not necessary

to determine the distribution functions for the random variables.

(5) The matching associated with the application program P is defined by an assignment func-

tion Af��: S → M such that if Af(i) = j, then S[i] is assigned to be executed on machine M[j].

NS[j]����� is defined as the number of subtasks assigned to be executed on machine M[j]. Thus,

j =0
Σ
m −1

NS[j] = n.

(6) A scheduling function Sf�� indicates the execution order of a subtask with respect to the other

subtasks assigned to the same machine. If Sf(i) = k, then S[i] is the k-th subtask whose com-

putation is executed on machine M[Af(i)], where 0 ≤ k < NS[Af(i)]. Readers should notice

that the scheduling function Sf schedules only the order of the computation for different

subtasks (not the order for executing the inter-machine communication steps).

(7) The set of data−source���������� functions�������� is

DS��� = {DS[0], DS[1], ..., DS[n − 1]},

where DS[i](j) = [k 1, k 2] (0 ≤ i < n, 0 ≤ j < NI[i], 0 ≤ k 1 < n, and 0 ≤ k 2 < m) means that

S[i] obtains the input data item Id[i, j] from S[k 1] and k 2 = Af(k 1). If DS[i](j) = [k 1, k 2]

and k 1 = −1, then Id[i, j] = (−1, dx) and S[i] obtains the associated initial data element from

machine M[k 2] where dx is initially stored. Readers should notice that, when k 1 ≠ −1, the

augmented information k 2 can be obtained with the known Af and is redundant. But the in-

11

formation from k 2 is necessary to specify the source of an initial data element when k 1 =

−1. The above definition of DS gives a unified way of specifying the values of a data-source

function. If each subtask fetches its input data items only from the sources where they are

generated (in the case of the initial data elements, from their initial locations), there exists

only one choice of DS for each specific Af and Sf. But if the impact of the data locality and

multiple data-copies is considered, there are different choices for DS. This choice of DS

corresponds to the data relocation problem discussed in Section 2.

It is assumed that each subtask S[i] will submit a copy of its input data item Id[i, j] to the

network for forwarding to other destination machines (based on DS) immediately after Id[i, j] is

available on machine M[Af(i)]. Each subtask will also submit copies of all of its output data

items to the network to be transferred to the proper destination machines (based on DS) after the

completion of its entire computation. Thus, Af, Sf, and DS together completely specify the com-

putation and inter-machine communication steps needed at any time to execute the application

program P in a dedicated HC system.

(8) The communication������������� time���� estimator�������� D[s, r, e]�������� denotes the length of the communication time

interval between the time when a data item e is available onM[s] and the time when e is ob-

tained by M[r] (assuming this transfer is required for the given Af, Sf, and DS). For the rea-

son stated in Section 1, D[s, r, e] is assumed to be a random variable (again recall that the

distribution of this random variable is not needed to derive the results of this paper). D[s, r,

e] includes all the various hardware and software related times of the inter-machine com-

munication process (e.g., network latency and the time for data format conversion between

M[s] and M[r] when necessary).

Most of the literature for HC (e.g., [GhY93, KhP92, TaA95, TaS97]) assumes that the

inter-machine communication time for sending a data item e from M[s] to M[r] is only a func-

tion of s, r, and e. But in reality, even in a dedicated HC system, when an application program is

executed, the traffic pattern for inter-machine communication can be impacted by subtask com-

12

putation and other inter-machine communication times that are all input data dependent (and

represented as random variables). The choice of Af, Sf, and DS impacts all of these computation

and communication times and, hence, the communication time interval between the time when e

is available on M[s] and the time when e is obtained by M[r]. Thus, the communication time es-

timator D[s, r, e] is dependent on Af, Sf, DS, s, r, and e.

In general, it will be extremely difficult (if not impossible) to estimate the distribution func-

tion of D[s, r, e] as a function of Af, Sf, DS, s, r, and e. The purpose of defining D[s, r, e] here is

to address the factors that impact the inter-machine communication times for the application

programs executed in a dedicated HC system. It also helps to establish a theoretical model for

defining the global optimization criterion of the optimization problem for HC. With this well-

defined theoretical model and global optimization criterion, the greedy algorithm based approach

introduced in Section 6 can provide potential data relocation heuristics with a sound local optim-

ization criterion based on a solid theoretical derivation. Within the matching and scheduling

problem domain, many researchers have shown that local optimization is a worthwhile approach

to achieve global optimization (e.g., [ElL90, IvO95, SiL93]). Thus, future data relocation heuris-

tics can follow the local optimization criterion in Section 6 to achieve a reasonable level of glo-

bal optimization without the information about the exact distribution function of D[s, r, e].

4: A Topological Sort Based Algorithm for Calculating the Execution Time of an

Application Program in an HC System

In this section, a topological sort based algorithm for calculating the total execution time

(computation and communication times) of an HC application program is introduced. This algo-

rithm helps establish the global optimization criterion of the optimization problem for HC with

respect to matching, scheduling, and data relocation.

For a given computation matrix C and communication time estimator D[s, r, e], the total

execution time of the application program P associated with an assignment function Af, a

13

scheduling function Sf, and a set of data-source functions DS is defined by the following pro-

cedure. A data���� relocation��������� graph����� (denoted as Gr���) corresponding to a particular Af, Sf, and DS is

generated using the steps specified below. When the impact of data locality and multiple data-

copies is considered, the concept of a valid set of data-source functions DS of the application

program P can be defined according to the properties of Gr. There may be many valid sets for

P, each corresponding to a unique graph for P, and each resulting in possibly different execution

time of P. An invalid DS would correspond to a set of data-source functions that does not result

in an operational program.

The steps for constructing Gr are as follows.

Step 1: A Source vertex is generated that represents the locations of all the initial data elements

(which may be on different machines).

Step 2: For each S[i], NI[i] + 1 vertices are created, one for each of the NI[i] input data items

and one for all of the generated output data items of S[i]. These are the set of input data vertices,

labeled V[i, j]����� (0 ≤ j < NI[i]) and the output data vertex Vg[i]����� (as shown in Figure 2). V[i, j]

represents the operation for subtask S[i] to receive its j-th input data item. Vg[i] represents the

computation for S[i] to generate all of its output data items. V�� is a set that contains all of the

above vertices associated with the application program P in Steps 1 and 2. Each V[i, j] is associ-

ated with a weight zero and each Vg[i] is associated with a weight C[i, Af(i)], the computation

time of subtask S[i] on the machine assigned by the assignment function Af.

Step 3: For any input data vertex V[i 1, j 1], suppose that DS[i 1](j 1) = [i 2, k 2] where −1 ≤ i 2 <

n and 0 ≤ k 2 < m, and if 0 ≤ i 2 < n, then k 2 = Af(i 2).

Case A:������� S[i 1] obtains its required input-data item Id[i 1, j 1] by copying it from the Source vertex

if Id[i 1, j 1] = (−1, dk) and dk is one of the initial data elements.

If i 2 = −1, then there exists k (0 ≤ k < Q), such that Id[i 1, j 1] = (−1, dk), and a directed edge with

weight D[k 2, Af(i 1), Id[i 1, j 1]] is added from the Source vertex to V[i 1, j 1] (recall that

DS[i 1](j 1) = [i 2, k 2] implies that dk is received from machine M[k 2]). That is, if subtask

S[i 1]’s j 1-th input data item Id[i 1, j 1] is one of the initial data elements and is obtained from

14

�������

.

S[i]

V[i, 0] V[i, 1] V[i, j]

Vg[i]

. . . V[i, j] represents subtask

S[i] receiving its j-th

input data item

Vg[i] represents subtask S[i]

generating all of its output data items

Figure 2: The generation of the input and output data vertices and activate edges for S[i].

one of the initial locations where dk is stored before program execution, then add an edge from

the Source vertex to V[i 1, j 1] whose weight is the communication time interval needed to

transfer that initial data element from the initial location M[k 2] where it is stored to the machine

assigned to S[i 1].

Case B:������� S[i 1] obtains its required input-data item Id[i 1, j 1] by copying it from the subtask that

generates Id[i 1, j 1].

If 0 ≤ i 2 < n and there is j 2, such that Id[i 1, j 1] = Gd[i 2, j 2], then a directed edge with weight

D[k 2, Af(i 1), Id[i 1, j 1]] is added from Vg[i 2] to V[i 1, j 1]. That is, if subtask S[i 1]’s j 1-th input

data item Id[i 1, j 1] is subtask S[i 2]’s j 2-th output data item Gd[i 2, j 2], then add an edge from

Vg[i 2] to V[i 1, j 1] whose weight is the communication time interval needed to transfer that data

item from M[k 2] to the machine assigned to S[i 1].

Case C:������� S[i 1] obtains its required input-data item Id[i 1, j 1] by copying it from one of the other

subtasks that have obtained that input-data item already.

If 0 ≤ i 2 < n, and there is a j 2, such that Id[i 1, j 1] = Id[i 2, j 2], then a directed edge with weight

D[k 2, Af(i 1), Id[i 1, j 1]] is added from V[i 2, j 2] to V[i 1, j 1]. That is, if subtask S[i 1]’s j 1-th in-

put data item Id[i 1, j 1] is obtained by copying subtask S[i 2]’s j 2-th input data item Id[i 2, j 2],

15

then add an edge from V[i 2, j 2] to V[i 1, j 1] whose weight is the communication time interval

needed to transfer that data item from M[k 2] to the machine assigned to S[i 1].

For any input data vertex V[i 1, j 1] (0 ≤ i 1 < n and 0 ≤ j 1 < NI[i 1]) for a given DS, one and

only one case of A, B, or C can occur. Thus, any vertex V[i 1, j 1] has one and only one parent

vertex, which is specified by the given DS. Also, the weight of the edge between V[i 1, j 1] and its

unique parent vertex is the communication time interval needed for S[i 1] to obtain Id[i 1, j 1]

from its source with respect to the given Af, Sf, and DS.

Step 4: For every 0 ≤ i < n, a directed edge with weight zero is added from V[i, j] to Vg[i] for all

j, 0 ≤ j < NI[i] (as shown in Figure 2). All the edges generated in this step are called activate�������

edges�����.

As an example, suppose that for the specific application program P illustrated by the sub-

task flow graph shown in Figure 1, Table 1 lists its corresponding parameters. The initial data

elements of P are d 0 and d 1; The generated data items of P are X 0, X 1, Y, Z 0, and Z 1. Note

that initial data elements are named with lower case letters and generated data items with upper

case letters. The result of applying the set of data-source functions defined by the subtask flow

graph in Figure 1 is shown by Figure 3 (recall that is just one possible set of data-source func-

tions).

If the Gr generated above is an acyclic graph, then the corresponding DS is defined as a

valid����� set��� of�� data−source���������� functions�������� for the application program P. If the graph had a cycle, then

deadlock would arise in the application program P, which makes P unschedulable. Readers

should notice that the weight of each edge or vertex depends on Af, Sf, and DS. The validity of a

particular DS is based on the subtask flow graph and is independent of the underlying Af and Sf

for generating the specific Gr. For the rest of this paper, only valid sets of data-source functions

will be considered.

Step 5: For each i 1 and i 2 (0 ≤ i 1 < n and 0 ≤ i 2 < n), if Af(i 1) = Af(i 2) and Sf(i 1) = Sf(i 2) − 1

(i.e., S[i 1] and S[i 2] are assigned to the same machine and S[i 1] is executed immediately before

16

���

���

���

���

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

���

NIS [0] [0] = 1 Id [0] = 2NG[0, 0] = (−1, d 0)

[1]S [1] = 2NI

[2]S NI [2] = 2

[5]S NI [5] = 2

[4] = 2NI[4]S

Id [5, 1] = (2, Z 0)

[5, 0] = (0, X 1)Id

[4, 1] = (2, Z 1)Id

Id

[3, 1] = (1, Y)

[3, 0] = (−1, d 1)

[3, 2] = (2, Z 0)Id

Id

Id

[3] = 3NIS [3]

Id [2, 1] = (−1, d 1)

[2, 0] = (0, X 0)Id

[1, 1] = (0, X 0)Id

Id [1, 0] = (−1, d 0)

subtask no. inputs input data items no. outputs output data items

Gd [0, 0] = (0, X 0)

[0, 1] = (0, X 1)Gd

Gd

Gd

[1, 0] = (1, Y)Gd[1] = 1NG

NG [2] = 2

[5] = 0NG

[4] = 0NG

[3] = 0NG

[2, 0] = (2, Z 0)

[2, 1] = (2, Z 1)

[4, 0] = (0, X 1)

Table 1: Parameters for the subtask flow graph shown in Figure 1.

S[i 2]), a directed edge with weight zero is added from Vg[i 1] to Vg[i 2]. The extended graph

based on Gr and Sf after this step is defined as the execution�������� graph����� Ex��� of P. For the example in

Figure 1, one possible assignment function Af is: Af(0) = 1, Af(1) = 2, Af(2) = 2, Af(3) = 1, Af(4)

= 3, and Af(5) = 0. One possible scheduling function Sf for this example and Af is: Sf(0) = 0,

Sf(1) = 0, Sf(2) = 1, Sf(3) = 1, Sf(4) = 0, Sf(5) = 0, then the corresponding directed edges added

by this step are shown by the dashed lines from Vg[0] to Vg[3] and from Vg[1] to Vg[2] in Figure

3. If the generated execution graph Ex is acyclic, then the corresponding scheduling function

generates an operational program and is defined as a valid����� scheduling��������� function�������. For the rest of

this paper, only valid scheduling functions will be considered.

17

��
�

��
�

��
�

��
�
�
�

V

V

V [5, 0]

[5]

[1, 0]

Vg [1]
g [2]

Vg [3] Vg [4] Vg

V [0, 0]

Source

V [1, 1] V [2, 0]

Vg [0]

V [3, 0] V [3, 1] V [3, 2]

V [4, 0] V [4, 1]

V [5, 1]

d 1

d 0

d 1

X 0 X 0

X 1

X 1Y Z 0 Z 0

d 0

V [2, 1]

Z 1

Figure 3: Generating an execution graph with respect to the given matching, scheduling, and

data relocation schemes associated with the subtask flow graph shown in Figure 1.

Step 6: Each vertex v� of Ex is associated with a starting������� time���� ST(v)����� and a finishing�������� time���� FT(v)�����

(ST(v) and FT(v) are random variables). From the definitions in Steps 4 and 5, the execution

graph Ex generated is acyclic. Thus, there exists a topological sort [CoL90] of the vertices in V.

Set ST(Source) = 0. W(v)���� is the weight of v (recall that each V[i, j] is associated with a weight

zero and each Vg[i] is associated with a weight C[i, Af(i)]). Suppose that vk�� is one of the im-

mediate predecessors of v, W(vk , v)������� is the weight of the direct edge from vk to v. Then ST(v) and

FT(v) can be derived inductively one by one in the order specified by the topological sort accord-

ing to the following formulae:

18

ST(v) =
k
max {FT(vk) + W(vk , v)} (1)

FT(v) = ST(v) +W(v). (2)

Step 7: The total execution time of the application program P associated with an assignment

function Af, a valid scheduling function Sf, and a valid set of data-source functions DS is defined

by the following formula:

Execution_timeP(Af , Sf , DS) =
v ∈V
max{FT(v)}. (3)

Suppose that E{x}����� denotes the expected value of a random variable x. The objective of match-

ing, scheduling, and data relocation for HC is to find an assignment function Af * , a valid

scheduling function Sf * , and a valid set of data-source functions DS* , such that

E{Execution_timeP(Af
* , Sf * , DS*)} =

Af ,Sf ,DS
min E{Execution_timeP(Af , Sf ,DS)}. (4)

Thus, the minimization of the expected value of the total execution time of an application pro-

gram is the global optimization criterion of the optimization problem for HC described in Sec-

tion 1 with respect to the stochastic model defined in Section 3.

It is assumed in this mathematical model that, if there is no data dependency between two

subtasks S[i] and S[j], and they are assigned to be executed on two different machines by the as-

signment function Af, then S[i] and S[j] can be executed concurrently. Furthermore, the inter-

machine communication step for one subtask to obtain one of its input data items can be over-

lapped with (a) inter-machine communication step(s) to obtain its other input data item(s), (b)

the inter-machine communication steps of other subtasks to obtain their input data items, and (c)

the computation steps of other subtasks. The distribution of each random variable D[s, r, e] indi-

cates any time delay resulting from network or machine I/O conflicts.

As stated in Section 3, it is extremely difficult to obtain the exact distribution of D[s, r, e].

The purpose of the above topological sort based procedure is not for calculating

19

Execution_timeP(Af, Sf, DS) in practice due to this difficulty. Rather it is to define the global op-

timization criterion theoretically for the optimization problem of HC. The theorem presented in

Section 6 is based on this defined Execution_timeP(Af, Sf, DS) with a known Af, Sf, and DS and

provides a practical local optimization criterion for future data relocation heuristics.

5: A Procedure for Enumerating the Valid Options in Choosing Data Relocation Schemes

5.1: Overview

In Subsection 5.2, a procedure for enumerating all the valid options in choosing the data re-

location schemes with respect to an arbitrary matching is described for subtask flow graphs

without inter-subtask conditional and looping constructs. With the presence of the inter-subtask

conditional and looping constructs, the same procedure presented in Subsection 5.2 is extended

in Subsection 5.3 to enumerate the valid options in choosing the data relocation schemes. The

material presented in this section defines the search space for the optimization problem based on

the stochastic model of HC mentioned in Section 1. This search space enumerates the possible

combinations of Af, Sf, and DS with respect to a specific subtask flow graph (or a specific HC ap-

plication). The number of valid combinations (i.e., the size of the search space) denotes the com-

plexity of the optimization problem. This defined search space also helps future data relocation

heuristic developers to know all the valid options in choosing a data relocation scheme.

5.2: Description for Subtask Flow Graphs without Inter-Subtask Conditional and

Looping Constructs

A directed graph Dg[Af]������ corresponding to a specific assignment function Af can be generat-

ed by connecting the vertices in V as follows (recall that V is a set that contains all the vertices

generated for any specific application program P according to Steps 1 and 2 described in Section

4). This directed graph (via vertex and edge connectivity) illustrates all possible sources from

where a subtask could fetch its individual input data item:

20

Step 1: For every i 1, j 1, i 2, and j 2, where 0 ≤ i 1 < n, 0 ≤ i 2 < n, 0 ≤ j 1 < NI[i 1], 0 ≤ j 2 <

NI[i 2], and i 1 ≠ i 2, such that Id[i 1, j 1] = Id[i 2, j 2] = e, a directed edge from V[i 1, j 1] to V[i 2,

j 2] and a directed edge from V[i 2, j 2] to V[i 1, j 1] are added.

Step 2: For every i 1, j 1, i 2, and j 2, where 0 ≤ i 1 < n, 0 ≤ i 2 < n, 0 ≤ j 1 < NG[i 1], and 0 ≤ j 2 <

NI[i 2], such that Gd[i 1, j 1] = Id[i 2, j 2] = e, a directed edge from Vg[i 1] to V[i 2, j 2] is added.

After the above Steps 1 and 2, each generated data item Gd[i 1, j 1] of P corresponds to a

fully connected graph of the set of vertices VG [i 1, j 1]��������� = {V[i 2, j 2] | Gd[i 1, j 1] = Id[i 2, j 2], 0 ≤

i 2 < n, 0 ≤ j 2 < NI[i 2]}. This corresponds to the set of input data vertices that need the generat-

ed data item Gd[i 1, j 1]. Also, Vg[i 1] is connected uni-directionally (i.e., Vg[i 1] is the starting

point of each directed edge) to all the vertices in VG[i 1, j 1].

Step 3: For every i, j, and k, such that Id[i, j] = (−1, dk), where 0 ≤ i < n, 0 ≤ j < NI[i], and 0 ≤ k

< Q, a directed edge from the Source vertex to V[i, j] is added.

After the above Step 3, each initial data item (−1, dk) (0 ≤ k < Q) of P corresponds to a ful-

ly connected graph of the set of vertices VI[k]����� = {V[i, j] | Id[i, j] = (−1, dk)} (i.e., the input data

vertices that need the initial data element dk). There is also a directed edge from the Source ver-

tex to each vertex in VI[k]. All the edges generated in the above Steps 1, 2, and 3 are called

fetch����� edges�����.

Figure 4 illustrates components of Dg[Af] for the example discussed in Section 4, based on

the subtask flow graph shown in Figure 1. Recall that the parameters of the above example sub-

task flow graph are listed by Table 1. After applying above Steps 1, 2, and 3, the edges (both

solid and dashed lines) of Dg[Af] in Figure 4 are fetch edges corresponding to the initial data ele-

ments d 0 and the generated data items X 0 and Z 0.

A directed graph Dg[Af] can be generated by knowing only P and Af. After generating

Dg[Af], any algorithm for enumerating the spanning trees of a directed graph [CoL90] can be ap-

plied to the subgraphs of Dg[Af] for (1) the set of vertices {Vg[i]} ∪ VG[i, j] (0 ≤ i < n and 0 ≤ j

< NG[i]) and (2) the set of vertices {Source} ∪ VI[k] (0 ≤ k < Q). The roots of all possible span-

21

V

��
�

������������������

��

Source

V

V

V [5, 0]

[5]

[1, 0]

Vg [1]
g [2]

Vg [3] g [4] Vg

d

Z

0

0

0X

V [0, 0]

V [1, 1] V [2, 0] V [2, 1]

V [3, 0] V [3, 1] V [3, 2]

V [4, 0] V [4, 1]

V [5, 1]

Vg[0]

Figure 4: The d 0, X 0, and Z 0 components of Dg[Af], based on the subtask flow graph in

Figure 1.

ning trees are Vg[i] (0 ≤ i < n) or the Source vertex, respectively. Each spanning tree correspond-

ing to the set of vertices {Vg[i]} ∪ VG[i, j] specifies a valid data relocation scheme for the gen-

erated data item Gd[i, j]. Because the Source vertex can denote multiple locations where each in-

itial data element dk is stored before the execution of P, each spanning tree corresponding to the

set of vertices {Source} ∪ VI[k] can specify a suite of valid data relocation schemes for the ini-

tial data element dk . In the above generated spanning trees, if the parent vertex of V[i 1, j 1] is

V[i 2, j 2] or Vg[i 2], then DS[i 1](j 1) = [i 2, Af(i 2)]; and if the parent vertex of V[i 1, j 1] is the

Source vertex, then DS[i 1](j 1) = [−1, q], where M[q] is one of the initial locations of the

corresponding initial data element. The solid lines in Figure 4 illustrate one spanning tree for

22

each of d 0, X 0, and Z 0, respectively.

5.3: Description for Subtask Flow Graphs with Inter-Subtask Conditional and

Looping Constructs

5.3.1: With the Presence of Inter-Subtask Conditional Constructs

In order to maintain a static analysis approach, it is assumed that the branching probabili-

ties P then����� and P else���� for the ‘‘then’’ and ‘‘else’’ clauses of the input-data-dependent conditional

constructs in the subtask flow graph are known and P then + P else = 1. Estimates of these two

probabilities can be determined from empirical information or be supplied by the application

users (such assumptions are typical in the literature, e.g., [Tow86]). Figure 5(a) shows an exam-

ple in which there is an input-data-dependent conditional construct after S[1]. It is assumed that

the left branch after S[1] is the ‘‘then’’ clause and the right branch after S[1] is the ‘‘else’’ clause

of the corresponding input-data-dependent conditional construct.

The expected time for computing subtask S[i] in the ‘‘then’’ clause of an input-data-

dependent conditional construct on M[Af(i)] is P then . C[i, Af(i)]. The expected time for comput-

ing subtask S[i] in the ‘‘else’’ clause of an input-data-dependent conditional construct on

M[Af(i)] is P else . C[i, Af(i)]. Similarly, the inter-machine data transfer times for transferring sub-

tasks’ input and output data items inside an input-data-dependent conditional construct should be

multiplied by their corresponding branching probability. For example, as shown in Figure 5(a),

(1, D 1) of S[2] and (4, D 5) of S[5] are inside the input-data-dependent conditional construct, but

(0, D 0) of S[1] and (5, D 6) of S[6] are not. With the above changes of the timing information,

the topological sort based procedure presented in Section 4 can be used to determine the total ex-

ecution time of a subtask flow graph with input-data-dependent conditional constructs.

With the presence of input-data-dependent conditional constructs in the subtask flow graph,

the post-conditional locations of the input data items and output data items of the subtasks inside

the ‘‘then’’ and ‘‘else’’ clauses cannot be determined at compile time (i.e., their locations will

23

��
�

��
�

��
�

��
�

��
�

��
�

�������
�
�
�
�����

�����

D 4

D 2

d 1
d 1

D 3

D 6

Source

S

S [1]

[0]

S [2] S [3]

S [4]

S [5]

[6]S

d 0

D 0

(a)

D 5

elsethen
if

d 1

Source

S

S

S [0]

[1]

[2]

d 1

D 0

D 2

Source

S [0]

[2]S

. . .

. . .D 2

D 2

D 0

d 1

D 1 D 1

(b)

S S . . .
D 2

[1(1)]

S[1(Nit)]

D 1

[1(2)]

D 1

d 2

d 0
d 2

d 2d 2

d 0

Figure 5: (a) Input-data-dependent conditional and (b) looping constructs in the subtask flow

graphs (d 0, d 1, and d 2 are initial data elements, D 0 to D 6 are generated data items).

depend on the value of the conditional and how the clauses are executed at run time). The pro-

cedures for adding fetch edges to generate Dg[Af] presented in Subsection 5.2 must be modified

to reflect the properties of input-data-dependent conditional constructs. For the ease of presenta-

tion, the following procedures are presented for the case of having only one input-data-

dependent conditional construct in the subtask flow graph. For the case of having nested input-

data-dependent conditional constructs and/or more than one input-data-dependent conditional

construct in the same scope level of the application program, the same procedures can be extend-

24

ed inductively and applied due to the modular structure [BoM76] of the subtask flow graph.

Step 1: For each input or output data item d, an associated scope����� level���� Scope[d]�������� is defined. Sub-

tasks’ input and output data items that are not part of the input-data-dependent conditional con-

struct all have their corresponding scope levels as ‘‘Outside.’’ For example, (−1, d 0) of S[0] and

(5, D 6) of S[6] in Figure 5(a) belong to this category. Alternatively, subtasks’ input and output

data items that are part of the input-data-dependent conditional construct all have their

corresponding scope levels as ‘‘Inside.’’ For example, (1, D 1) of S[2], (−1, d 1) of S[3], and (2,

D 3) of S[4] in Figure 5(a) all belong to this category.

Step 2: Each input and output data item d is associated with a clause������ identifier�������� Cid[d]������. Subtasks’

input and output data items that are not part of the input-data-dependent conditional construct all

have their corresponding clause identifier as ‘‘Global.’’ For example, both (−1, d 0) of S[0] and

(5, D 6) of S[6] belong to this category. Subtasks’ input and output data items that are part of the

‘‘then’’ clause of the input-data-dependent conditional construct have their corresponding clause

identifier as ‘‘Then.’’ For example, (1, D 1) of S[2], (−1, d 1) of S[2], and (4, D 5) of S[5] all be-

long to this category. Subtasks’ input and output data items that are part of the ‘‘else’’ clause of

the input-data-dependent conditional construct have their corresponding clause identifier as

‘‘Else.’’ For example, (1, D 2) of S[3], (−1, d 1) of of S[3], and (3, D 4) of S[5] belong to this

category.

Step 3: One extension of the definition of the scope level of a data item is described as follows.

If for two data items Id[i 1, j 1] and Id[i 2, j 2], such that Id[i 1, j 1] = Id[i 2, j 2] = e, Scope[Id[i 1,

j 1]] = Scope[Id[i 2, j 2]] = ‘‘Inside,’’ Cid[Id[i 1, j 1]] = ‘‘Then,’’ Cid[Id[i 2, j 2]] = ‘‘Else,’’ and

Af(i 1) = Af(i 2) = i, then reset Scope[Id[i 1, j 1]] = Scope[Id[i 2, j 2]] = ‘‘Outside’’ and Cid[Id[i 1,

j 1]] = Cid[Id[i 2, j 2]] = ‘‘Global.’’ The reason is that, because no matter what is the exact execu-

tion trace of the input-data-dependent conditional construct during run time, data item e will be

available on machine M[i] either via S[i 1]’s copy inside the ‘‘then’’ clause or S[i 2]’s copy inside

the ‘‘else’’ clause. For example, if Af(2) = Af(3) = i, then (−1, d 1) on machine M[i] belongs to

this category.

25

After the above three labeling steps for each data item of the subtasks in the application

program, each data item d is associated with a scope level Scope[d] and a clause identifier

Cid[d]. The following Step 4 is defined based on the above two augmented parameters of d.

Step 4: Step 1 in Subsection 5.2 should be modified as the following. Steps 2 and 3 in Subsec-

tion 5.2 are unchanged.

Case A:������� For every i 1, j 1, i 2, and j 2, where 0 ≤ i 1 < n, 0 ≤ i 2 < n, 0 ≤ j 1 < NI[i 1], 0 ≤ j 2 <

NI[i 2], and i 1 ≠ i 2, such that Id[i 1, j 1] = Id[i 2, j 2] = e, Scope[Id[i 1, j 1]] = Scope[Id[i 2, j 2]],

and Cid[Id[i 1, j 1]] = Cid[Id[i 2, j 2]], a directed edge from V[i 1, j 1] to V[i 2, j 2] and a directed

edge from V[i 2, j 2] to V[i 1, j 1] are added.

Case B:������� For every i 1, j 1, i 2, and j 2, where 0 ≤ i 1 < n, 0 ≤ i 2 < n, 0 ≤ j 1 < NI[i 1], 0 ≤ j 2 <

NI[i 2], and i 1 ≠ i 2, such that Id[i 1, j 1] = Id[i 2, j 2] = e, Scope[Id[i 1, j 1]] = ‘‘Outside,’’ and

Scope[Id[i 2, j 2]] = ‘‘Inside’’, only one directed edge from V[i 1, j 1] to V[i 2, j 2] is added.

With the above four augmenting steps (compared with Steps 1, 2, and 3 in Subsection 5.2)

for generating Dg[Af], subtask flow graphs with input-data-dependent conditional constructs can

be handled properly. Those augmenting steps with scope levels and clause identifiers, enumerate

all the possible sources for fetching each particular data item with the presence of the input-

data-dependent conditional constructs in the subtask flow graph.

5.3.2: With the Presence of Inter-Subtask Looping Constructs

Similar to the case of having input-data-dependent conditional constructs, for the ease of

presentation, the following procedures are presented for the case of having only one looping

construct in the entire subtask flow graph. For the case of having nested looping constructs

and/or more than one looping construct, the same procedures can be extended inductively and

applied just as well due to the modular structure of the subtask flow graph, as discussed for the

data conditional cases.

26

Suppose Nit��� is the maximum number of iterations that the looping construct will execute.

S[i (j)] is the subtask that represents the number j iteration of subtask S[i] that is inside a looping

construct, for 1 ≤ j ≤ Nit. It is assumed that the distribution for the number of iterations the loop-

ing construct will execute is known. Let Lp[k]����� (0 ≤ k ≤ Nit) is the probability that the looping

construct will execute a total of k iterations, where
k = 0
Σ
Nit

Lp[k] = 1. Then, Lp̃[j]����� =
k = j
Σ
Nit

Lp[k] is the

probability that iteration number j of the looping construct will be executed.

As shown in Figure 5(b), there is an input-data-dependent looping construct (containing

S[1]) between S[0] and S[2]. The initial cyclic subtask flow graph (due to the presence of the

looping construct) is transformed into an acyclic one. A total of Nit copies of S[1] are generated.

It is assumed that a matching scheme is given for all the subtasks (including S[i (j)]’s) in the

acyclic subtask flow graph generated by the above transformation. The time for computing

iteration number j of S[i] (i.e., S[i (j)]) on machine M[Af(i (j))] is Lp̃[j] . C[i (j) , Af(i (j))]. Similar-

ly, the inter-machine data transfer time for transferring subtasks’ input and output data items in-

side iteration number j of the looping construct should be multiplied by Lp̃[j] as well. With the

above changes of the timing information, the topological sort based procedure presented in Sec-

tion 4 can be used to determine the total execution time of a subtask flow graph with looping

constructs.

For the case of having a looping construct in the subtask flow graph, Step 1 in Subsection

5.2 must have the following two rules added. Steps 2 and 3 in Subsection 5.2 are unchanged.

(1) Subtask S[i (j)] (i.e., the iteration number j of S[i] in the looping construct) can obtain its in-

put data items by copying them from other subtasks that are in the iteration number k of the

looping construct, where k ≤ j. S[i (j)] also can obtain its input data items by copying them

from other subtasks that are not in the looping construct or from the Source.

(2) Subtask S[k] that is not in the looping construct can only obtain its input data items by

copying them from other subtasks that are not in the looping construct, from S[i (j)] where

Lp̃[j] = 1, or from the Source.

27

6: A Greedy Approach to Establishing a Local Optimization Criterion

for Developing Data Relocation Heuristics

In this section, a greedy algorithm based approach to establishing a local optimization cri-

terion for developing data relocation heuristics is presented. This greedy strategy is established

based on the mathematical model, the global optimization criterion, and search space described

in Sections 3, 4, and 5, respectively, for the optimization problem in HC. The goal of this section

is to show that an approach based on a greedy algorithm can establish a reasonable local optimi-

zation criterion for developing data relocation heuristics. Choosing Af, Sf, and DS to minimize

the expected value of the total execution time based on a stochastic HC model is a complex op-

timization problem. However, developing heuristics to find suboptimal Af, Sf, and DS is neces-

sary to use HC systems efficiently.

This section concentrates on developing data relocation heuristics to choose a suboptimal

data relocation scheme for a given matching and scheduling to decrease the expected value of

the total execution time of an HC application program. One of the techniques for developing

heuristics is to achieve a reasonable level of global optimization using a well-evaluated local op-

timization criterion. The local optimization criterion for developing data relocation heuristics

presented in this section is the minimization of the expected time when each subtask can start its

computation after obtaining all of its input data items.

A greedy algorithm based approach for data relocation to achieving the above local optimi-

zation is to minimize the expected receiving time for each input data item of each subtask. Sup-

pose that rt(V[i, j])�������� is the random variable that specifies the receiving time of input data item Id[i,

j] for subtask S[i]. Then, the time when S[i] can start its computation step after obtaining all of

its input data items is
0 ≤ j < NI[i]
max [rt(V[i, j])]. The above greedy algorithm based approach states

that, the minimization of E{
0 ≤ j < NI[i]

max [rt(V[i, j])]} can be achieved by the minimization of

E{rt(V[i, j])} for all j, 0 ≤ j < NI[i]. For an arbitrary set of random variables, this greedy strategy

in general will not lead to the stated local optimization. That is, for a general set of random vari-

28

ables G[j], 0 ≤ j < J, it is not always the case that the minimization of E{
0 ≤ j < J
max G[j]} can be

achieved by the minimization of E{G[j]} for all j, 0 ≤ j < J. But with the assumptions of the dis-

tributions of rt(V[i, j]) and rt ′(V[i, j])��������� corresponding to two different data relocation schemes DS

and DS ′ shown in the next paragraph, this greedy approach can be proven to achieve the above

stated local optimization.

The following assumptions about rt(V[i, j]) and rt ′(V[i, j]) are made.

(1) rt(V[i, j]) + k and rt ′(V[i, j]) + k ′ for a fixed i and j (where k and k ′ are arbitrary constants)

belong to the same two-parameter family of random variables [CaB90]. Most of the com-

mon families of distributions for random variables, such as normal distribution, Gamma

distribution, and Beta distribution, have this property.

(2) The variance of rt(V[i, j]) is equal to the variance of rt ′(V[i, j]) for fixed i and j.

(3) For any data relocation scheme DS, rt(V[i, j 1]) + c 1 is independent of rt(V[i, j 2]) + c 2 (j 1

≠ j 2 and c 1 and c 2 are arbitrary constants).

Assumptions (1), (2), and (3) are all related to the statistical properties of rt(V[i, j]) and

rt ′(V[i, j]). If these assumptions are approximately satisfied in reality, the theorem that follows

based on these assumptions is of practical as well as theoretical significance. For assumptions

(1) and (2), because rt(V[i, j]) and rt ′(V[i, j]) are two random variables for specifying the receiv-

ing times of the same data item (i.e., Id[i, j]) for S[i], for the same Af and Sf, but corresponding to

two different data relocation schemes, it is quite reasonable to assume that they have certain

similar statistical properties (e.g., their variances, their families of distribution). For assumption

(3), although rt(V[i, j 1]) and rt(V[i, j 2]) are defined for two different data items, if the inter-

machine data transfer steps for Id[i, j 1] and Id[i, j 2] will impact each other or those two data

items are generated by the same subtask, their corresponding receiving times by S[i] can be

correlated to each other. However, conditions exist under which the random variables can be

treated as being independent of each other despite this type of correlation. The Kleinrock in-

29

dependence approximation for a data network in which there are many interacting transmission

queues [Kle64] is a well-known method for describing this situation. This Kleinrock indepen-

dence approximation is used here as the basis for assuming independence between rt(V[i, j]) +

c 1 and rt
′(V[i, j]) + c 2 that may technically be correlated. In [LiA97], similar assumptions are

made about the execution time distributions for the individual subtasks for statically estimating

the execution time distribution for an entire HC application program.

Theorem: For two different data relocation schemes DS and DS ′ , with the same Af and Sf, and

a fixed i (0 ≤ i < n), suppose Xj�� = rt(V[i, j]), Yj�� = rt
′(V[i, j]), X�� =

j
max[Xj], and Y�� =

j
max[Yj] (0 ≤ j

< NI[i]), where X and Y are random variables for specifying the times when S[i] receives all of

its input data items with respect to DS and DS ′ . If E{Xj} ≤ E{Yj} for 0 ≤ j < NI[i], then E{X} ≤

E{Y}.

Proof�����: Suppose that the distribution function of a random variable w is Fw . Because E{Xj} ≤

E{Yj} for all j, there exists cj ≥ 0, such that E{Xj} + cj = E{Xj + cj} = E{Yj}. Due to assump-

tion (2), Var{Xj + cj} = Var{Xj} = Var{Yj}. Then, because of assumption (1), FXj + cj = FYj .

From assumption (3), for 0 ≤ j < NI[i], {Xj + cj} and {Yj} are two sets of independent random

variables. With the properties associated with the ‘‘max’’ operator over multiple independent

random variables [CaB90], it can be shown that

Fmax{Xj + cj} =
j = 0
Π

NI[i] − 1
FXj + cj =

j = 0
Π

NI[i] − 1
FYj = Fmax{Yj} .

Therefore, E{Y} = E{
j

max[Yj]} = E{
j

max[Xj + cj]}. Because cj ≥ 0, E{Y} = E{
j

max[Xj + cj]} ≥

E{
j

max[Xj]} = E{X}. Thus, E{X} ≤ E{Y}. �

Based on the above theorem, the greedy algorithm based approach that finds a data reloca-

tion scheme to minimize E{rt(V[i, j])} for S[i] to obtain Id[i, j] with respect to the same Af and

Sf for all j (0 ≤ j < NI[i]) can also minimize the expected time when S[i] receives all of its input

data items (i.e., E{X}) and is ready for its computation. The exact starting time and the cost of

the computation for S[i] (i.e., ST(Vg[i]) and C[i, Af(i)]) depend on the choice of Af and Sf.

30

The significance of the above theorem is that it shows a greedy algorithm based approach

can establish a reasonable local optimization criterion for developing data relocation heuristics.

Based on the above conclusion, in order to minimize the expected total execution time of an ap-

plication program executed in a dedicated HC system (the global optimization criterion), data re-

location heuristics should select the source for each input data item of S[i], among all the valid

options described in Section 5, such that its receiving time by S[i] is as small as possible. With

this greedy approach, the expected time when S[i] can start its computation after obtaining all of

its input data items (the local optimization criterion) can be minimized.

Given the approximation assumptions made, theoretically there exists a DS that can satisfy

E{Xj} ≤ E{Yj} for 0 ≤ j < NI[i]. However, in a real HC system, the inter-machine communica-

tion steps specified by the selected data relocation scheme for one subtask may impact the ex-

pected receiving time of input data items for other subtasks. Thus, the data relocation scheme

that minimizes E{rt(V[i, j])} for every S[i] and all j (0 ≤ j < NI[i]) may be hard to find or may

not exist in practice. Trade-offs must be made to choose a suboptimal data relocation scheme,

such that more input data items can be obtained by more subtasks as quickly as possible.

Because the rt(V[i, j])’s corresponding to different data relocation schemes are random

variables, in general, the distributions of the rt(V[i, j])’s are needed for choosing a proper DS for

obtaining Id[i, j] for S[i]. But based on the above proven theorem with its underlying assump-

tions, only the expected values of rt(V[i, j])’s are needed to make such a decision, because the

minimization of the expected time when S[i] can obtain Id[i, j] for each 0 ≤ j < NI[i] can lead to

the minimization of the expected time when S[i] obtains all of its input data items and may start

its computation. In practice, E{rt(V[i, j])} corresponding to a particular DS is much easier to es-

timate than the probability distribution function of rt(V[i, j]). For example, for the networks us-

ing the popular and ubiquitous TCP/IP protocol, the inter-machine communication time com-

ponent of E{rt(V[i, j])} can be estimated by the value of the expected round trip time (RTT) de-

lay between any two machines in the network kept by the TCP protocol on routers [Com91].

31

The minimization of the expected time when a selected subtask S[i] can start its computa-

tion is adopted by many other matching and scheduling heuristics as their local optimization cri-

terion [ElL90, IvO95, SiL93, WaA96]. The greedy approach, validated by the above theorem,

for achieving this local optimization can be used by those matching and scheduling heuristics to

intelligently select a data relocation scheme for S[i] based on a theoretical stochastic HC model.

Thus, coupled with the selection criterion for specifying the order of achieving the above local

optimization for subtasks in the original matching and scheduling heuristic (e.g., priority-based

for list scheduling), the greedy strategy for developing a data relocation heuristic presented in

this paper can be expected to further decrease the inter-machine communication overhead of the

given HC application program. For the matching and scheduling related heuristics that do not

adopt the above local optimization criterion to achieve global optimization, choosing a data relo-

cation scheme to minimize the expected time when a selected S[i] can start its computation (real-

ized by the presented greedy strategy) is still a reasonable approach to decrease the inter-

machine communication overhead of an HC application. For example, in [WaS96], a genetic-

algorithm-based heuristic for matching and scheduling applies the greedy strategy presented in

this paper for selecting data relocation for a given matching and scheduling.

7: Summary

In an HC system, the subtasks of an application program P must be assigned to a suite of

heterogeneous machines (the matching problem) and ordered (the scheduling problem) to utilize

computational resources effectively. The matching and scheduling solutions presented in the

literature, in general, concentrate on decreasing the computation time of P. The inter-machine

communication time of P is impacted by the scheme for distributing the initial data elements and

the generated data items of P to different subtasks (the data relocation problem).

The inter-machine communication time in an HC system can have a significant impact on

overall system performance, so that any technique that can be used to reduce this time is impor-

tant. This paper focused on the data relocation scheme to decrease the inter-machine communi-

32

cation time for given matching and scheduling schemes, when the possible concurrent execution

of multiple subtasks on different machines is considered.

This paper concentrates on theoretical aspects of data relocation using a stochastic HC

model. The optimization problem for minimizing the total execution time of an application pro-

gram executed in a dedicated HC system with respect to matching, scheduling, and data reloca-

tion is completely defined. This theoretical definition is based on the stochastic mathematical

model, the global optimization criterion, and the search space described in Sections 3, 4, and 5,

respectively. The cases in which the application programs may include inter-subtask conditional

and looping constructs are considered. The practical application of the above theoretical results

is demonstrated by the theorem shown in Section 6 that validates a greedy algorithm based ap-

proach can establish a reasonable local optimization criterion for developing data relocation

heuristics. The validation is provided by a theoretical proof based on a set of common assump-

tions about the underlying HC system and application program. The stochastic HC model

presented, the local optimization criterion established by the greedy approach, and the search

space defined for choosing valid data relocation schemes can help developers of future data relo-

cation heuristics.

Acknowledgments: The authors thank John K. Antonio, Gayathri Krishnamurthy, Mark B. Ku-

laczewski, Yan A. Li, and Janet M. Siegel for their valuable comments. A preliminary version

of portions of this material was presented at the 6th Heterogeneous Computing Workshop.

Shoukat Ali assisted in the preparation of the final manuscript.

33

Appendix: Glossary of Notation

Af assignment function (assigns subtasks of application program P to machines)

C[i, j] computation time of subtask i on machine j

Cid[d] clause identifier for data item d

Dg[Af] directed graph (corresponding to program P) showing data transfer options

based on a given Af

dk k-th initial data element of the application program P

DS[i](j) source of the j-th input data item for subtask i

D[s, r, e] time for transferring data item e from machine s to machine r

Ex generated execution graph corresponding to a particular Af, Sf, and DS

FT(v) finishing time of data transfer step (associated with an input data vertex v) and

computation step (associated with an output data vertex v)

G[i] generated output data set of subtask i

Gd[i, j] j-th generated output data item of subtask i

Gr generated graph corresponding to a particular Af and DS

I[i] input data set of subtask i

Id[i, j] j-th input data item of subtask i

Lp[k] probability that a looping construct will execute a total of k iterations

Lp̃[j] probability that iteration number j of a looping construct will be executed

M[j] j-th machine in the HC system, 0 ≤ j < m

m number of machines in the HC system

n number of subtasks in the application program P

34

NG[i] number of output data items generated by subtask i

Nit maximum number of iterations that a looping construct will execute

NI[i] number of input data items required by subtask i

NS[j] number of subtasks assigned to be executed on machine j

P then branching probability for the ‘‘then’’ clause of the inter-subtask

input-data-dependent conditional construct

P else branching probability for the ‘‘else’’ clause of the inter-subtask

input-data-dependent conditional construct

Q number of initial data elements for the application program P

rt(V[i, j]) random variable that specifies the receiving time of input data item Id[i, j]

for subtask S[i]

Scope[d] scope level of data item d

Sf scheduling function associated with the application program P

S[i] i-th subtask of an application program P, 0 ≤ i < n

S[i (j)] subtask that represents the number j iteration of subtask S[i] that is inside

a looping construct

ST(v) starting time of data transfer step (associated with an input data vertex v) and

computation step (associated with an output data vertex v)

Vg[i] output data vertex of subtask i

V[i, j] j-th input data vertex of subtask i

VG[i, j] set of input data vertices that need the generated data item Gd[i, j]

VI[k] set of input data vertices that need the initial data element dk

W(v) weight of an input or output data vertex v

W(vk , v) weight of the direct edge from vk to v, where vk is one of the immediate

predecessors of v

35

References:

[BoM76] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier Science

Publishing Co., Inc., New York, NY, 1976.

[CaB90] G. Casella and R. L. Berger, Statistical Inference, Wadsworth & Brooks/Cole Ad-

vanced Books & Software, Pacific Grove, CA, 1990.

[ChE93] S. Chen, M. M. Eshaghian, A. Khokhar, and M. E. Shaaban, ‘‘A selection theory and

methodology for heterogeneous supercomputing,’’ 2nd Workshop on Heterogeneous

Processing, Apr. 1993, pp. 15-22.

[CiL95] M. Cierniak, W. Li, and M. J. Zaki, ‘‘Loop scheduling for heterogeneity,’’ 4th IEEE

Int’l Symp. on High-Performance Distributed Computing, Aug. 1995, pp. 78-85.

[CoL90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT

Press, Cambridge, MA, 1990.

[Com91] D. E. Comer, Internetworking with TCP/IP, Volume I: Principles, Protocols, and Ar-

chitecture, Second Edition, Prentice Hall, Englewood Cliffs, NJ, 1991.

[ElL90] H. El-Rewini and T. G. Lewis, ‘‘Scheduling parallel program tasks onto arbitrary tar-

get machines,’’ J. of Parallel and Distributed Computing, Vol. 9, No. 2, June 1990,

pp. 138-153.

[Fre89] R. F. Freund, ‘‘Optimal selection theory for superconcurrency,’’ Supercomputing ’89,

Nov. 1989, pp. 699-703.

[FrG98] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,

E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J.

Siegel, ‘‘Scheduling resources in multi-user, heterogeneous, computing environments

with SmartNet,’’ 7th Heterogeneous Computing Workshop,Mar. 1998, pp. 184-199.

[FrS93] R. F. Freund and H. J. Siegel, ‘‘Heterogeneous processing,’’ IEEE Computer, Vol.

26, No. 6, June 1993, pp. 13-17.

36

[GhY93] A. Ghafoor and J. Yang, ‘‘Distributed heterogeneous supercomputing management

system,’’ IEEE Computer, Vol. 26, No. 6, June 1993, pp. 78-86.

[IvO95] M. A. Iverson, F. Ozguner, and G. J. Follen, ‘‘Parallelizing existing applications in a

distributed heterogeneous environment,’’ 4th Heterogeneous Computing Workshop,

Apr. 1995, pp. 93-100.

[KhP92] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang, ‘‘Heterogeneous super-

computing: problems and issues,’’ 1st Workshop on Heterogeneous Processing, Mar.

1992, pp. 3-12.

[KhP93] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang, ‘‘Heterogeneous comput-

ing: challenges and opportunities,’’ IEEE Computer, Vol. 26, No. 6, June 1993, pp.

18-27.

[Kle64] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay, McGraw-

Hill, New York, NY, 1964.

[LiA97a] Y. A. Li and J. K. Antonio, ‘‘Estimating the execution time distribution for a task

graph in a heterogeneous computing system,’’ 6th Heterogeneous Computing

Workshop, Apr. 1997, pp. 172-184.

[LiA97b] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan, and D. W. Watson, ‘‘Determining the

execution time distribution for a data parallel program in a heterogeneous computing

environment,’’ J. of Parallel and Distributed Computing, Vol. 44, No. 1, July 1997,

pp. 35-52.

[NaY94] B. Narahari, A. Youssef, and H. A. Choi, ‘‘Matching and scheduling in a generalized

optimal selection theory,’’ 3rd Heterogeneous Computing Workshop, Apr. 1994, pp.

3-8.

[SiA96] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li, ‘‘Heterogeneous

computing,’’ in Parallel and Distributed Computing Handbook, A. Y. Zomaya, ed.,

McGraw-Hill, New York, NY, 1996, pp. 725-761.

37

[SiD97] H. J. Siegel, H. G. Dietz, and J. K. Antonio, ‘‘Software Support for Heterogeneous

Computing,’’ in The Computer Science and Engineering Handbook, A. B. Tucker,

Jr., ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-1909.

[SiL93] G. C. Sih and E. A. Lee, ‘‘A compile-time scheduling heuristic for interconnection-

constrained heterogeneous processor architectures,’’ IEEE Trans. on Parallel and

Distributed Systems, Vol. 4, No. 2, Feb. 1993, pp. 75-87.

[TaS97] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li, ‘‘Minimizing the application exe-

cution time through scheduling of subtasks and communication traffic in a hetero-

geneous computing system,’’ IEEE Trans. on Parallel and Distributed Systems, Vol.

8, No. 8 Aug. 1997, pp. 857-871.

[Tow86] D. Towsley, ‘‘Allocating programs containing branches and loops within a multiple

processor system,’’ IEEE Trans. on Software Engineering, Vol. SE-12, No. 10, Oct.

1986, pp. 1018-1024.

[WaA96] D. W. Watson, J. K. Antonio, H. J. Siegel, R. Gupta, and M. J. Atallah, ‘‘Static

matching of ordered program segments to dedicated machines in a heterogeneous

computing environment,’’ 5th Heterogeneous Computing Workshop, Apr. 1996, pp.

24-37.

[WaK92] M. Wang, S.-D. Kim, M. A. Nichols, R. F. Freund, H. J. Siegel, and W. G. Nation,

‘‘Augmenting the optimal selection theory for superconcurrency,’’ 1st Workshop on

Heterogeneous Processing, Mar. 1992, pp. 13-22.

[WaS97] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, ‘‘Task matching

and scheduling in heterogeneous computing environments using a genetic-

algorithm-based approach,’’ J. of Parallel and Distributed Computing, Special Issue

on Parallel Evolutionary Computing, Vol. 47, No. 1, Nov. 25, 1997, pp. 8-22.

[YaK94] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor, ‘‘Estimating execution time for

parallel tasks in heterogeneous processing (HP) environment,’’ 3rd Heterogeneous

38

Computing Workshop, Apr. 1994, pp. 23-28.

[ZhY95] X. Zhang and Y. Yan, ‘‘Modeling and characterizing parallel computing performance

on heterogeneous networks of workstations,’’ 7th IEEE Symp. on Parallel and Distri-

buted Processing, Oct. 1995, pp. 25-34.

